2025

118.

Near-Infrared Photothermal Conversion by Isocorrole and Phlorin Derivatives

J. Caine, S. Larsen, A. Ghosh and Z. M. Hudson

Inorg. Chem. 2025, accepted.
117.

Red Multi-Resonant Thermally Activated Delayed Fluorescence Emitters as Bioimaging Agents

C. Si, W. L. Primrose, Z. M. Hudson and E. Zysman-Colman

Adv. Opt. Mater. 2025, in press. DOI: 10.1002/adom.202402576
116.

The Future is Bright: The Emergence of Glassy Organic Dots for Biological Applications

W. L. Primrose, A. Sevilla-Pym and Z. M. Hudson

Chem. Eur. J. 2025, 31, e202403399. DOI: 10.1002/chem.202403399

2024

115.

Impurities in Arylboronic Esters Induce Persistent Afterglow

Z. Wu, C. Herok, A. Friedrich, B. Engels, T. B. Marder and Z. M. Hudson

J. Am. Chem. Soc. 2024, 146, 31507–31517. DOI: 10.1021/jacs.4c08329
114.

Co-assembling Mesoporous Zeolitic Imidazolate Frameworks by Directed Reticular Chemistry

M. Liu, M. Asgari, K. Bergmann, K. Shenassa, G. King, A. F. G. Leontowich, D. Fairen-Jimenez and Z. M. Hudson

J. Am. Chem. Soc. 2024, 146, 31295–31306. DOI: 10.1021/jacs.4c12385
113.

Polymer Dots with Delayed Fluorescence and Tunable Cellular Uptake for Photodynamic Therapy and Time-Gated Imaging

B. T. Luppi, W. L. Primrose and Z. M. Hudson

Angew. Chem. Int. Ed. 2024, 63, e202400712. DOI: 10.1002/anie.202400712
112.

Dopants Induce Persistent Room Temperature Phosphorescence in Triarylamine Boronate Esters

Z. Wu, K. Bergmann and Z. M. Hudson

Angew. Chem. Int. Ed. 2024, 63, e202319089. DOI: 10.1002/anie.202319089
111.

Triplet Dynamics Reveal Loss Pathways in Multi-Resonance Thermally Activated Delayed Fluorescence Emitters

A. N. Stuart, K. Bergmann, I. Cho, W. J. Kendrick, Z. M. Hudson, W. W. H. Wong and G. Lakhwani

Chem. Sci. 2024, 15, 14027–14036. DOI: 10.1039/D4SC03649B
110.

Organelle-Targeting Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Subcellular Imaging

A. Sevilla-Pym, W. L. Primrose, B. T. Luppi, K. Bergmann and Z. M. Hudson

ACS Appl. Mater. Interfaces 2024, 16, 46133–46144. DOI: 10.1021/acsami.4c10311
109.

Homogeneous and Segmented Nanofibers with a Conjugated Poly(3-(2-ethylhexyl)thiophene) Core via Living Crystallization-Driven Self-Assembly

M. Vespa, Z. M. Hudson and I. Manners

Macromolecules 2024, 57, 1509–1520. DOI: 10.1021/acs.macromol.3c02357
108.

Controlling the Size of Glassy Organic Dots Exhibiting Thermally Activated Delayed Fluorescence for Bioimaging

W. L. Primrose, P. Hu and Z. M. Hudson

ACS Appl. Nano Mater. 2024, 7, 12673–12681. DOI: 10.1021/acsanm.4c01199
107.

Investigating Hydrogen Bonding in Quinoxaline-Based Thermally Activated Delayed Fluorescent Materials

R. Hojo, K. Bergmann and Z. M. Hudson

J. Phys. Chem. Lett. 2024, 15, 5600–5606. DOI: 10.1021/acs.jpclett.4c01177
106.

Crystallization-Driven Self-Assembly of Poly(3-hexylthiophene)-b-Poly((2,5-heptan-3-yloxy)p-phenylene), a pi-Conjugated Diblock Copolymer with a Rigid Rod Corona-Forming Block

M. Vespa, L. MacFarlane, Z. M. Hudson and I. Manners

Polym. Chem. 2024, 15, 1839–1850. DOI: 10.1039/D4PY00154K
105.

Reversible Nucleophilic Ring-Opening of Tetraoxapentacene Derivatives: Accessing New Materials for Thermally Activated Delayed Fluorescence

L. K. Hiscock, A. T. Gogoulis, M. Diamantopoulos, V. S. Patel, L. N. Dawe, Z. M. Hudson and K. E. Maly

J. Org. Chem. 2024, 89, 15598–15606. DOI: 10.1021/acs.joc.4c01687
104.

Organic Photothermal Materials Obtained Using Thermally Activated Delayed Fluorescence Design Principles

J. R. Caine, H. Choi, R. Hojo and Z. M. Hudson

Chem. Eur. J. 2024, 30, e202302861. DOI: 10.1002/chem.202302861
103.

Triplet−Triplet Annihilation Upconversion from Red to Blue Light Using a TADF Sensitizer Based Polymer

L. Li, S. Kamal, A. M. Polgar and Z. M. Hudson

J. Phys. Chem. B 2024, 128, 8997–9004. DOI: 10.1021/acs.jpcb.4c02774
102.

Excited-State Dynamics of C3-symmetric Heptazine-Based Thermally Activated Delayed Fluorescence Emitters

K. Bergmann and Z. M. Hudson

Faraday Discuss. 2024, 250, 181–191. DOI: 10.1039/D3FD00121K

2023

101.

Macro-/mesoporous Metal–Organic Frameworks Templated by Amphiphilic Block Copolymers Enable Enhanced Uptake of Large Molecules

M. Liu and Z. M. Hudson

Adv. Funct. Mater. 2023, 33, 2214262. DOI: 10.1002/adfm.202214262
100.

Imidazophenothiazine-based Thermally Activated Delayed Fluorescence Materials with Ultra Long-Lived Excited States for Energy Transfer Photocatalysis

R. Hojo, K. Bergmann, S. A. Elgadi, D. M. Mayder, M. A. Emmanuel, M. S. Oderinde and Z. M. Hudson

J. Am. Chem. Soc. 2023, 145, 18366–18381. DOI: 10.1021/jacs.3c04132
99.

Achieving White-Light Emission Using Organic Persistent Room Temperature Phosphorescence

Z. Wu, H. Choi and Z. M. Hudson

Angew. Chem. Int. Ed. 2023, 62, e202301186. DOI: 10.1002/anie.202301186
98.

Unlocking New Applications for Thermally Activated Delayed Fluorescence Using Polymer Nanoparticles

J. R. Caine, P. Hu, A. T. Gogoulis and Z. M. Hudson

Acc. Mater. Res. 2023, 4, 879–891. DOI: 10.1021/accountsmr.3c00124
97.

Metallaphotoredox Decarboxylative Arylation of Natural Amino Acids via An Elusive Mechanistic Pathway

M. Pitchai, A. Ramirez, D. M. Mayder, S. Ulaganathan, H. Kumar, D. Aulakh, A. Gupta, A. Mathur, J. Kempson, N. Meanwell, Z. M. Hudson and M. S. Oderinde

ACS Catal. 2023, 13, 647–658. DOI: 10.1021/acscatal.2c05554
96.

Semiconducting Polymer Dots Directly Stabilized with Serum Albumin: Preparation, Characterization and Cellular Immunolabeling

R. Gupta, Y. Wang, G. H. Darwish, J. Poisson, A. Szwarczewski, S. Kim, C. Traaseth, Z. M. Hudson and W. R. Algar

ACS Appl. Mater. Interfaces 2023, 15, 55456–55465. DOI: 10.1021/acsami.3c13430
95.

Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Sulfidoazatriangulene-Based Materials and their S-oxides

S. A. Elgadi, D. M. Mayder, R. Hojo and Z. M. Hudson

Adv. Opt. Mater. 2023, 11, 2202754. DOI: 10.1002/adom.202202754
94.

Thermally Activated Delayed Fluorescence and Mechanochromism in Napthalimide-Azatriangulenes

S. A. Elgadi, A. Y. Cai and Z. M. Hudson

J. Mater. Chem. C 2023, 11, 11589–11596. DOI: 10.1039/D3TC02407E
93.

Uncovering the Mechanism of Thermally Activated Delayed Fluorescence in Coplanar Emitters using Potential Energy Surface Analysis

K. Bergmann, R. Hojo and Z. M. Hudson

J. Phys. Chem. Lett. 2023, 14, 310–317. DOI: 10.1021/acs.jpclett.2c03425
92.

Red-Shifted Emission in Multiple Resonance Thermally Activated Delayed Fluorescent Materials Through Malononitrile Incorporation

A. T. Gogoulis, R. Hojo, K. Bergmann and Z. M. Hudson

Org. Lett. 2023, 25, 7791–7795. DOI: 10.1021/acs.orglett.3c02858
91.

Through-Space Charge Transfer and Delayed Fluorescence in Tris(triazolo)triazine Donor-Acceptor Copolymers

R. Hojo, B. T. Luppi, K. Bergmann and Z. M. Hudson

Polym. Chem. 2023, 14, 2742–2749. DOI: 10.1039/D3PY00325F
90.

Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Materials with Imidazopyrazine-5,6-dicarbonitrile Acceptors

P. Xu, R. Hojo and Z. M. Hudson

Chem. Eur. J. 2023, 29, e202203585. DOI: 10.1002/chem.202203585
89.

Dibenzodipyridophenazines with Dendritic Electron Donors Exhibiting Deep Red Emission and Thermally Activated Delayed Fluorescence

W. L. Primrose, D. M. Mayder, R. Hojo and Z. M. Hudson

J. Org. Chem. 2023, 88, 4224–4233. DOI: 10.1021/acs.joc.2c02774
88.

Cationic Bottlebrush Brush Polymers via Sequential SI-ROMP and SI-ARGET-ATRP

J. Poisson, C. J. Christopherson and Z. M. Hudson

Polym. Int. 2023, 72, 267–273. DOI: 10.1002/pi.6482
87.

A Grafting-Through Strategy for the Synthesis of Bottlebrush Nanofibers from Organic Semiconductors

K. A. Thompson, D. M. Mayder, C. M. Tonge, E. R. Sauvé, H. R. Lefeaux and Z. M. Hudson

Can. J. Chem. 2023, 101, 118–125. DOI: 10.1139/cjc-2021-0279

2022

86.

Heptazine-Based TADF Materials for Nanoparticle-Based Non-linear Optical Bioimaging

D. M. Mayder, R. Hojo, W. L. Primrose, C. M. Tonge and Z. M. Hudson

Adv. Funct. Mater. 2022, 32, 2204087. DOI: 10.1002/adfm.202204087
85.

Mechanistic Principles for Engineering Hierarchical Porous Metal–Organic Frameworks

M. Liu, L. Zu and Z. M. Hudson

ACS Nano 2022, 16, 13573–13594. DOI: 10.1021/acsnano.2c06587
84.

Estimating Phosphorescent Emission Energies in Ir(III) Complexes using Large-Scale Quantum Computing Simulations

S. N. Genin, I. G. Ryabinkin, N. R. Paisley, S. O. Whelan, M. G. Helander and Z. M. Hudson

Angew. Chem. Int. Ed. 2022, 61, e202116175. DOI: 10.1002/anie.202116175
83.

Design of High-Performance Thermally Activated Delayed Fluorescence Emitters Containing s-Triazine and s-Heptazine with Molecular Orbital Visualization by STM

D. M. Mayder, C. M. Tonge, G. D. Nguyen, R. Hojo, N. R. Paisley, J. Yu, G. Tom, S. A. Burke and Z. M. Hudson

Chem. Mater. 2022, 34, 2624–2635. DOI: 10.1021/acs.chemmater.1c03870
82.

Miktoarm Star Polymers: Synthesis and Applications

M. Liu, J. R. Blankenship, A. E. Levi, Q. Fu, Z. M. Hudson and C. M. Bates

Chem. Mater. 2022, 34, 6188–6209. DOI: 10.1021/acs.chemmater.2c01220
81.

An Imidazoacridine-Based TADF Material as Efficient Organic Photosensitizer for Visible-Light-Promoted [2+2] Cycloaddition

E. R. Sauvé, D. M. Mayder, S. Kamal, M. S. Oderinde and Z. M. Hudson

Chem. Sci. 2022, 13, 2296–2302. DOI: 10.1039/D1SC05098B
80.

Thermally Activated Delayed Fluorescence Sensitizers as Organic and Green Alternatives in Energy Transfer Photocatalysis

R. Hojo, A. M. Polgar and Z. M. Hudson

ACS Sus. Chem. Eng. 2022, 10, 9665–9678. DOI: 10.1021/acssuschemeng.2c01426
79.

Deep-Blue Emission and Thermally Activated Delayed Fluorescence via Dimroth Rearrangement of Tris(triazolo)triazines

R. Hojo, D. M. Mayder and Z. M. Hudson

J. Mater. Chem. C 2022, 10, 13871–13877. DOI: 10.1039/D2TC01153K
78.

Polymer Dots and Glassy Organic Dots using Dibenzodipyridophenazine Dyes as Water-Dispersible TADF Probes for Cellular Imaging

D. M. Mayder, C. J. Christopherson, W. L. Primrose, A. S.-M. Lin and Z. M. Hudson

J. Mater. Chem. B 2022, 10, 6496-6506. DOI: 10.1039/D2TB01252A
77.

Donor Modification of Thermally Activated Delayed Fluorescence Photosensitizers for Organic Atom Transfer Radical Polymerization

A. M. Polgar, S. H. Huang and Z. M. Hudson

Polym. Chem. 2022, 13, 3892–3903. DOI: 10.1039/D2PY00470D
76.

Luminescent Surface-Tethered Polymer Brush Materials

J. Poisson and Z. M. Hudson

Chem. Eur. J. 2022, 28, e202283262. DOI: 10.1002/chem.202200552
75.

Rheology of Mature Fine Tailings

J. Piette, A. Abbasi Moud, J. Poisson, B. Derakhshandeh, Z. M. Hudson and S. G. Hatzikiriakos

Phys. Fluids 2022, 34, 063104. DOI: 10.1063/5.0091505

2021

74.

Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Time-Gated Cellular Imaging

C. J. Christopherson, N. R. Paisley, Z. Xiao, W. R. Algar and Z. M. Hudson

J. Am. Chem. Soc. 2021, 143, 13342–13349. DOI: 10.1021/jacs.1c06290
73.

Polymer Dots with Enhanced Photostability, Quantum Yield, and Two-Photon Cross-Section Using Structurally Constrained Deep-Blue Fluorophores

D. M. Mayder, C. M. Tonge, G. D. Nguyen, M. V. Tran, G. Tom, G. H. Darwish, R. Gupta, K. Lix, S. Kamal, W. R. Algar, S. A. Burke and Z. M. Hudson

J. Am. Chem. Soc. 2021, 143, 16976–16992. DOI: 10.1021/jacs.1c06094
72.

Near-Infrared Emitting Boron Difluoride Curcuminoid-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence as Biological Imaging Probes

N. R. Paisley, S. V. Halldorson, M. V. Tran, R. Gupta, S. Kamal, W. R. Algar and Z. M. Hudson

Angew. Chem. Int. Ed. 2021, 60, 18630–18638. DOI: 10.1002/anie.202103965
71.

Preparation of Patterned and Multilayer Thin Films for Organic Electronics via Oxygen-Tolerant SI-PET-RAFT

J. Poisson, A. M. Polgar, M. Fromel, C. W. Pester and Z. M. Hudson

Angew. Chem. Int. Ed. 2021, 60, 19988–19996. DOI: 10.1002/anie.202107830
70.

Donor-Acceptor Materials Exhibiting Deep Blue Emission and Thermally Activated Delayed Fluorescence with Tris(triazolo)triazine

R. Hojo, D. M. Mayder and Z. M. Hudson

J. Mater. Chem. C 2021, 9, 14342–14350. DOI: 10.1039/D1TC03480D
69.

Deep-Blue Fluorophores with Imidazoacridine Acceptors: Enhancing Photostablility and Two-Photon Fluorescence using Structural Constraint

E. R. Sauvé, C. M. Tonge and Z. M. Hudson

J. Mater. Chem. C 2021, 9, 4164–4172. DOI:10.1039/D0TC05241H
68.

Thermally Activated Delayed Fluorescence Materials as Organic Photosensitizers

A. M. Polgar and Z. M. Hudson

Chem. Commun. 2021, 57, 10675–10688. DOI: 10.1039/D1CC04593H
67.

Enhancement of Red Thermally Assisted Fluorescence in Bottlebrush Block Copolymers

A. M. Polgar, J. Poisson, C. J. Christopherson and Z. M. Hudson

Macromolecules 2021, 54, 7880–7889. DOI: 10.1021/acs.macromol.1c01524
66.

Exploring the Scope of Through-Space Charge Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor-Acceptor Copolymers

J. Poisson, C. M. Tonge, N. R. Paisley, E. R. Sauvé, H. McMillan, S. V. Halldorson and Z. M. Hudson

Macromolecules 2021, 54, 2466–2476. DOI:10.1021/acs.macromol.0c02494
65.

Yield Stress and Wall Slip of Kaolinite Networks

A. Abbasi Moud, J. Poisson, Z. M. Hudson and S. G. Hatzikiriakos

Phys. Fluids 2021, 33, 053105. DOI:10.1063/5.0050541

2020

64.

Organization of Chromophores into Multiblock Bottlebrush Nanofibers Allows for Regulation of Energy Transfer Processes

E. R. Sauvé, C. M. Tonge and Z. M. Hudson

Chem. Mater. 2020, 32, 2208–2219. DOI:10.1021/acs.chemmater.0c00224.
63.

Room Temperature Crystallization of Amorphous Polysiloxane usiung Photodimerization.

T. Wright, Y. Petel, C. O. Zellman, E. R. Sauvé, Z. M. Hudson, C. A. Michal and M. O. Wolf

Chem. Sci. 2020, 11, 3081–3088. DOI:10.1039/C9SC06235A
62.

Thermally Assisted Fluorescent Polymers: Polycyclic Aromatic Materials for High Color Purity and White Light Emission

A. M. Polgar, C. M. Tonge, C. J. Christopherson, N. R. Paisley, A. C. Reyes and Z. M. Hudson

ACS Appl. Mater. Interfaces 2020, 12, 38602–38613. DOI: 10.1021/acsami.0c07892
61.

1,8-Naphthalimide-Based Polymers Exhibiting Deep-Red Thermally Activated Delayed Fluorescence and their Application in Ratiometric Temperature Sensing

C. J. Christopherson, D. M. Mayder, J. Poisson, N. R. Paisley, C. M. Tonge and Z. M. Hudson

ACS Appl. Mater. Interfaces 2020, 12, 20000–20011. DOI:10.1021/acsami.0c05257
60.

Color-Tunable Thermally Activated Delayed Fluorescence in Oxadiazole-Based Acrylic Copolymers: Photophysical Properties and Applications in Ratiometric Oxygen Sensing

C. M. Tonge, N. R. Paisley, A. M. Polgar, K. Lix, W. R. Algar and Z. M. Hudson

ACS Appl. Mater. Interfaces 2020, 12, 6525-6535. DOI:10.1021/acsami.9b22464
59.

Towards Biodegradable Electronics: Ionic Diodes Based on a Cellulose Nanocrystals-Agarose Hydrogel

K. Nyamayaro, P. Keyvani, F. D'Acierno, J. Poisson, Z. M. Hudson, C. Michal, J. Madden, S. Hatzikiriakos, and P. Mehrkhodavandi

ACS Appl. Mater. Interfaces 2020, 12, 52182–52191. DOI: 10.1021/acsami.0c15601
58.

Dextran-Functionalization of Semiconducting Polymer Dots and Conjugation with Tetrameric Antibody Complexes for Bioanalysis and Imaging

K. Lix, M. V. Tran, M. Massey, K. Rees, E. R. Sauvé, Z. M. Hudson and W. R. Algar

ACS Appl. Bio. Mater. 2020, 3, 432–440. DOI:10.1021/acsabm.9b00899
57.

Tunable Benzothiadiazole-Based Donor-Acceptor Materials for Two-Photon Excited Fluorescence

N. R. Paisley, C. M. Tonge, D. M. Mayder, K. A. Thompson and Z. M. Hudson

Mater. Chem. Front. 2020, 4, 555–566. DOI:10.1039/C9QM00627C
56.

Bis(hexamethylazatriangulene)sulfone: A High-Stability Deep Blue-Violet Fluorophore with 100% Quantum Yield and CIEy < 0.07

C. M. Tonge, J. Zeng, Z. Zhao, B. Z. Tang and Z. M. Hudson

J. Mater. Chem. C 2020, 8, 5150-5155. DOI:10.1039/C9TC05938E.
55.

Blue to Yellow Thermally Activated Delayed Fluorescence with Quantum Yields Near Unity in Acrylic Polymers Based on D-π-A Pyrimidines

A. M. Polgar, J. Poisson, N. R. Paisley, C. J. Christopherson, A. C. Reyes and Z. M. Hudson

Macromolecules 2020, 53, 2039-2050. DOI:10.1021/acs.macromol.0c00287
54.

Thermally Activated Delayed Fluorescence in 1,3,4-Oxadiazoles with π-Extended Donors

D. M. Mayder, C. M. Tonge and Z. M. Hudson

J. Org. Chem. 2020, 85, 11094–11103. DOI:10.1021/acs.joc.0c00908
53.

Donor-Acceptor Materials Exhibiting Thermally Activated Delayed Fluorescence using a Planarized N-phenylbenzimidazole Acceptor

E. R. Sauvé, J. Paeng, S. Yamaguchi and Z. M. Hudson

J. Org. Chem. 2020, 85, 108-117. DOI:10.1021/acs.joc.9b02283
52.

Self-Assembly of Luminescent Triblock Bottlebrush Copolymers in Solution

F. Shao, Y. Wang, C. M. Tonge, E. R. Sauvé and Z. M. Hudson

Polym. Chem. 2020, 11, 1062–1071. DOI:10.1039/C9PY01695C
51.

Stimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging

N. R. Paisley, C. M. Tonge and Z. M. Hudson

Front. Chem. 2020, 8:229. DOI:10.3389/fchem.2020.00229

2019

50.

Aggregation-Induced Energy Transfer in Colour-Tunable Multiblock Bottlebrush Nanofibers

E. R. Sauvé, C. M. Tonge and Z. M. Hudson

J. Am. Chem. Soc. 2019, 141, 16422–16431. DOI:10.1021/jacs.9b08133
49.

Interface-Dependent Aggregation-Induced Delayed Fluorescence in Bottlebrush Polymer Nanofibers

C. M. Tonge and Z. M. Hudson

J. Am. Chem. Soc. 2019, 141, 13970–13976. DOI:10.1021/jacs.9b07156
48.

Fluorescent Heterotelechelic Single-Chain Polymer Nanoparticles: Synthesis, Spectroscopy and Cellular Imaging

D. N. F. Bajj, M. V. Tran, H.-Y. Tsai, H. Kim, N. R. Paisley, W. R. Algar and Z. M. Hudson

ACS Appl. Nano Mater. 2019, 2, 898–909. DOI: 10.1021/acsanm.8b02149
47.

Cu(0)-RDRP as an Efficient and Low-Cost Synthetic Route to Blue-Emissive Polymers for OLEDs

C. M. Tonge, F. Yuan, Z.-H. Lu and Z. M. Hudson

Polym. Chem. 2019, 10, 3288-3297. DOI: 10.1039/C9PY00294D
46.

Self-Assembly of Giant Bottlebrush Block Copolymer Surfactants from Luminescent Organic Electronic Materials

Y. Wang, F. Shao, E. R. Sauvé, C. M. Tonge and Z. M. Hudson

Soft Matter 2019, 15, 5421–5430. DOI: 10.1039/C9SM00931K

2018

45.

Multiblock Bottlebrush Nanofibers from Organic Electronic Materials

C. M. Tonge, E. R. Sauvé, S. Cheng, T. A. Howard and Z. M. Hudson

J. Am. Chem. Soc. 2018, 140, 11599–11603. DOI:10.1021/jacs.8b07915
44.

Ti-Catalyzed Hydroamination for the Synthesis of Amine-Containing π-Conjugated Materials

H. Hao, K. A. Thompson, Z. M. Hudson and L. L. Schafer

Chem. Eur. J. 2018, 24, 5562–5568. DOI: 10.1002/chem.201704500
43.

An Efficient Room-Temperature Synthesis of Highly Phosphorescent Styrenic Pt(II) Complexes and their Polymerization by ATRP

D. M. Mayder, K. A. Thompson, C. J. Christopherson, N. R. Paisley and Z. M. Hudson

Polym. Chem. 2018, 9, 5418 - 5425. DOI:10.1039/C8PY01337C
42.

Polymerization of Acrylates Based on n-Type Organic Semiconductors using Cu(0)-RDRP

C. M. Tonge, E. R. Sauvé, N. R. Paisley, J. E. Heyes and Z. M. Hudson

Polym. Chem. 2018, 9, 3359–3367. DOI:10.1039/C8PY00670A
41.

Cu(0)-RDRP of Acrylates based on p-Type Organic Semiconductors

E. R. Sauvé, C. M. Tonge, N. R. Paisley, S. Cheng and Z. M. Hudson

Polym. Chem. 2018, 9, 1397-1403. DOI:10.1039/C8PY00295A
40.

Synthesis of Phosphorescent Iridium-Containing Acrylic Monomers and their Room-Temperature Polymerization by Cu(0)-RDRP

C. J. Christopherson, Z. S. Hackett, E. R. Sauvé, N. R. Paisley, C. M. Tonge, D. M. Mayder and Z. M. Hudson

J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 2539–2546. DOI:10.1002/pola.29233
39.

Synthesis of Polymeric Organic Semiconductors Using Semifluorinated Polymer Precursors

N. R. Paisley, C. M. Tonge, E. R. Sauvé, S. V. Halldorson and Z. M. Hudson

J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 2183–2191. DOI:10.1002/pola.29183

2017

38.

Highly Photoluminescent Nonconjugated Polymers for Single-Layer Light Emitting Diodes

Z. A. Page, C.-Y. Chiu, B. Narupai, D. S. Laitar, S. Mukhopadhyay, A. Sokolov, Z. M. Hudson, R. Bou Zerdan, A. J. McGrath, J. W. Kramer, B. E. Barton and C. J. Hawker

ACS Photonics 2017, 4, 631–641. DOI:10.1021/acsphotonics.6b00994

2016

37.

Chemoselective Radical Dehalogenation and C–C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts

S. O. Poelma, G. L. Burnett, E. H. Discekici, K. M. Mattson, N. J. Treat, Y. Luo, Z. M. Hudson, S. L. Shankel, P. G. Clark, J. W. Kramer, C. J. Hawker and J. Read de Alaniz

J. Org. Chem. 2016, 81, 7155-7160. DOI:10.1021/acs.joc.6b01034

2015

36.

Multidimensional Hierarchical Self-Assembly of Amphiphilic Cylindrical Block Comicelles

H. Qiu, Z. M. Hudson, M. A. Winnik and I. Manners

Science 2015, 347, 1329–1332. DOI:10.1126/science.1261816
35.

Transformation and Patterning of Supermicelles using Dynamic Holographic Assembly

O. E. C. Gould, H. Qiu, D. J. Lunn, J. Rowden, R. L. Harniman, Z. M Hudson, M. A. Winnik, M. J. Miles and I. Manners

Nat. Commun. 2015, 6, 10009. DOI:10.1038/ncomms10009
34.

Fluorous Cylindrical Micelles of Controlled Length by Crystallization-Driven Self-Assembly of Block Copolymers in Fluorinated Media

Z. M. Hudson, J. Qian, C. E. Boott, M. A. Winnik and I. Manners

ACS Macro Lett. 2015, 4, 187–191. DOI:10.1021/mz500764n
33.

A Highly Reducing Metal-Free Photoredox Catalyst: Design and Application in Radical Dehalogenations

E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo, C. J. Hawker and J. Read de Alaniz

Chem. Commun. 2015, 51, 11705-11708. DOI:10.1039/C5CC04677G
32.

A Facile Synthesis of Catechol‐Functionalized Poly(ethylene oxide) Block and Random Copolymers

K. M. Mattson, A. A. Latimer, A. J. McGrath, N. A. Lynd, P. Lundberg, Z. M. Hudson, and C. J. Hawker

J. Polym. Sci. A: Polym. Chem. 2015, 53, 2685-2692. 10.1002/pola.27749
31.

Triarylboron-Functionalized Metal Complexes for OLEDs: Chapter 8 in “Organometallics and Related Molecules for Energy Conversion”

Z. M. Hudson, X. Wang and S. Wang.; W.-Y. Wong, Ed.

Springer-Verlag: Heidelberg, 2015, pp. 207-239.

2014

30.

Tailored Hierarchical Micelle Architectures using Living Crystallization-Driven Self-Assembly in Two Dimensions

Z. M. Hudson, C. E. Boott, M. E. Robinson, P. A. Rupar, M. A. Winnik and I. Manners

Nat. Chem. 2014, 6, 893–898. DOI:10.1038/nchem.2038
29.

Colour-Tunable Fluorescent Multiblock Micelles

Z. M. Hudson, D. J. Lunn, M. A. Winnik and I. Manners

Nat. Commun. 2014, 5:3372. DOI:10.1038/ncomms4372
28.

Assembly and Disassembly of Ferrocene-Based Nanotubes

Z. M. Hudson and I. Manners

Science 2014, 422, 482-483 (Invited Perspective). DOI:10.1126/science.1254140
27.

Gradient Crystallization-Driven Self-Assembly: Cylindrical Micelles with “Patchy” Coronal Nanosegregation via the Coassembly of Linear and Brush Block Copolymers

J. R. Finnegan, D. J. Lunn, O. E. C. Gould, Z. M. Hudson, G. R. Whittell, M. A. Winnik and I. Manners.

J. Am. Chem. Soc. 2014, 136, 13835–13844. DOI:10.1021/ja507121h
26.

Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-Micelles with a Crystalline π-Conjugated Polythiophene Core by Self-Seeding

J. Qian, X. Li, D. J. Lunn, J. Gwyther, Z. M. Hudson, E. Kynaston, P. A. Rupar, M. A. Winnik and I. Manners

J. Am. Chem. Soc. 2014, 136, 4121–4124. DOI:10.1021/ja500661k
25.

Impact of Constitutional Isomerism on Phosphorescence and Anion-Sensing Properties of Donor-Acceptor Organoboron Pt(II) Complexes

M.-N. Belzile, X. Wang, Z. M. Hudson and S. Wang

Dalton Trans. 2014, 43, 13696–13703. DOI:10.1039/C4DT01949K

2012

24.

Highly Efficient Blue Phosphorescence from Triarylboron-Functionalized Platinum(II) Complexes of N-Heterocyclic Carbenes

Z. M. Hudson, C. Sun, M. G. Helander, Y.-L. Chang, Z.-H. Lu and S. Wang

J. Am. Chem. Soc. 2012, 134, 13930–13933. DOI:10.1021/ja3048656
23.

N-Heterocyclic Carbazole-Based Hosts for Simplified Single-Layer Phosphorescent OLEDs with High Efficiency

Z. M. Hudson, Z.-B. Wang, M. G. Helander, Z.-H. Lu and S. Wang

Adv. Mater. 2012, 24, 2922–2928. DOI:10.1002/adma.201200927
22.

Modulating the Photoisomerization of N,C-Chelate Organoboranes with Triplet Acceptors

Z. M. Hudson, S.-B. Ko, S. Yamaguchi, and S. Wang

Org. Lett. 2012, 14, 5610–5613. DOI:10.1021/ol302742g
21.

Efficient and High Yield One-Pot Synthesis of Cyclometalated Platinum(II) β-Diketonates at Ambient Temperature

Z. M. Hudson, B. A. Blight and S. Wang

Org. Lett. 2012, 14, 1700-1703. DOI:10.1021/ol300242f
20.

Double Cyclization/Aryl Migration Across an Alkyne Bond Enabled by Organoboryl and Diarylplatinum Groups

C. Sun, Z. M. Hudson, L. D. Chen and S. Wang

Angew. Chem. Int. Ed. 2012, 51, 5671-5674. DOI:10.1002/ange.201201781

2011

19.

Highly Efficient Orange Electrophosphorescence from a Trifunctional Organoboron-Pt(II) Complex

Z. M. Hudson, M. G. Helander, Z.-H. Lu and S. Wang

Chem. Commun. 2011, 47, 755–757. DOI:10.1039/C0CC04014B
18.

Switchable Three-State Fluorescence of a Nonconjugated Donor-Acceptor Triarylborane

Z. M. Hudson, X.-Y. Liu and S. Wang

Org. Lett. 2011, 13, 300–303. DOI:10.1021/ol102749y
17.

Probing the Structural Origins of Vapochromism of a Triarylboron-Functionalized Pt(II) Acetylide by Optical and Multinuclear Solid-State NMR Spectroscopy

Z. M. Hudson, C. Sun, K. J. Harris, B. E. G. Lucier, R. W. Schurko and S. Wang

Inorg. Chem. 2011, 50, 3447–3457. DOI:10.1021/ic102349h
16.

Nonconjugated Dimesitylboryl-Functionalized Phenylpyridines and Their Cyclometalated Platinum(II) Complexes

Z. M. Hudson and S. Wang

Organometallics 2011, 30, 4695–4701. DOI:10.1021/om200539r
15.

Metal-Containing Triarylboranes: Photophysical Properties and Applications

Z. M. Hudson and S. Wang

Dalton Trans. 2011, 40, 7805–7816. DOI:10.1039/C1DT10292C
14.

Unlocking the Full Potential of Organic Light-Emitting Diodes on Flexible Plastic

Z.-B. Wang, M. G. Helander, D. P. Puzzo, Z. M. Hudson, S. Wang and Z.-H. Lu

Nat. Photonics 2011, 5, 737-757. DOI:10.1038/nphoton.2011.259
13.

Triarylboron-Functionalized 8-Hydroxyquinolines and Their Aluminum(III) Complexes

V. Zlojutro, Y. Sun, Z. M. Hudson, and S. Wang

Chem. Commun. 2011, 3837–3839. DOI:10.1039/C0CC04573J
12.

Pt(II) Complex Based Phosphorescent Organic Light Emitting Diodes with External Quantum Efficiencies Above 20%

Z.-B. Wang, M. G. Helander, Z. M. Hudson, J. Qiu, S. Wang and Z.-H. Lu

Appl. Phys. Lett. 2011, 98, 213301. DOI:10.1063/1.3593495
11.

Tuning and Switching MLCT Phosphorescence of [Ru(bpy)3]2+ Complexes with Triarylboranes and Anions

Y. Sun, Z. M. Hudson, Y.-L. Rao and S. Wang

Inorg. Chem. 2011, 50, 3373–3378. DOI:10.1021/ic1021966
10.

A Polyboryl-Functionalized Triazine as an Electron-Transport Material for OLEDs

C. Sun, Z. M. Hudson, M. G. Helander, Z.-H. Lu and S. Wang

Organometallics 2011, 30, 5552-5555. DOI:10.1021/om2007979

2010

09.

Enhancing Phosphorescence and Electrophosphorescence Efficiency of Cyclometalated Pt(II) Compounds with Triarylboron

Z. M. Hudson, C. Sun, M. G. Helander, H. Amarne, Z.-H. Lu and S. Wang

Adv. Funct. Mater. 2010, 20, 3426-3439. DOI:10.1002/adfm.201000904
08.

Linear and Star-Shaped Benzimidazolyl Derivatives: Syntheses, Photophysical Properties and Use as Highly Efficient Electron Transport Materials in OLEDs

W. White, Z. M. Hudson, X. Feng, S. Han, Z.-H. Lu and S. Wang

Dalton Trans. 2010, 39, 892–899. DOI:10.1039/B918203A
07.

Reactivity of Aryldimesitylboranes under Suzuki-Miyaura Coupling Conditions

N. Wang, Z. M. Hudson and S. Wang

Organometallics 2010, 29, 4007–4011. DOI:10.1021/om1006903

2009

06.

Impact of Donor−Acceptor Geometry and Metal Chelation on Photophysical Properties and Applications of Triarylboranes

Z. M. Hudson and S. Wang

Acc. Chem. Res. 2009, 42, 1584–1596. DOI:10.1021/ar900072u
05.

Switchable Ambient-Temperature Singlet-Triplet Dual Emission in Triarylboron-Pt(II) Complexes

Z. M. Hudson, S.-B. Zhao, R.-Y. Wang and S. Wang

Chem. Eur. J. 2009, 15, 6131–6137. DOI:10.1002/chem.200900641
04.

Enhancing the Photochemical Stability of N,C-Chelate Boryl Compounds: C-C Bond Formation versus C=C Bond cis, trans-Isomerization

C. Baik, Z. M. Hudson, H. Amarne and S. Wang

J. Am. Chem. Soc. 2009, 131, 14549–14559. DOI:10.1021/ja906430s
03.

The Structure of an Anionic Coordination Polymer {K2[Pt2 Ag8(2,2′-bipy)2(O2CCF3)14]}n

Z. M. Hudson, Y. Sun, B. Ross, R. Y. Wang and S. Wang

Acta Cryst. C 2009, 65, m328–m330. DOI:10.1107/S010827010902839X

2008

02.

Impact of the Linker on the Electronic and Luminescent Properties of Diboryl Compounds: Molecules with Two BMes2 Groups and The Peculiar Behavior of 1,6-(BMes2)2pyrene

S.-B. Zhao, P. Wücher, Z. M. Hudson, T. M. McCormick, X.-Y. Liu, S. Wang, X.-D. Feng and Z.-H. Lu

Organometallics 2008, 27, 6446–6456. DOI:10.1021/om800856g
01.

The Influence of Alkoxy Chain Length on the Ferroelectric Properties of Chiral Fluorenol Liquid Crystals

J. C. Roberts, Z. M. Hudson and R. P. Lemieux

J. Mater. Chem. 2008, 18, 3361–3365. DOI:10.1039/B804673E