2024
The Future is Bright: The Emergence of Glassy Organic Dots for Biological Applications
W. L. Primrose, A. Sevilla-Pym and Z. M. Hudson
Chem. Eur. J. 2024, accepted.Impurities in Arylboronic Esters Induce Persistent Afterglow
Z. Wu, C. Herok, A. Friedrich, B. Engels, T. B. Marder and Z. M. Hudson
J. Am. Chem. Soc. 2024, accepted.Co-assembling Mesoporous Zeolitic Imidazolate Frameworks by Directed Reticular Chemistry
M. Liu, M. Asgari, K. Bergmann, K. Shenassa, G. King, A. F. G. Leontowich, D. Fairen-Jimenez and Z. M. Hudson
J. Am. Chem. Soc. 2024, accepted.Reversible Nucleophilic Ring-Opening of Tetraoxapentacene Derivatives: Accessing New Materials for Thermally Activated Delayed Fluorescence
L. K. Hiscock, A. T. Gogoulis, M. Diamantopoulos, V. S. Patel, L. N. Dawe, Z. M. Hudson and K. E. Maly
J. Org. Chem. 2024, in press. DOI: 10.1021/acs.joc.4c01687Triplet−Triplet Annihilation Upconversion from Red to Blue Light Using a TADF Sensitizer Based Polymer
L. Li, S. Kamal, A. M. Polgar and Z. M. Hudson
J. Phys. Chem. B 2024, 128, 8997–9004. DOI: 10.1021/acs.jpcb.4c02774Organelle-Targeting Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Subcellular Imaging
A. Sevilla-Pym, W. L. Primrose, B. T. Luppi, K. Bergmann and Z. M. Hudson
ACS Appl. Mater. Interfaces 2024, 16, 46133–46144. DOI: 10.1021/acsami.4c10311Triplet Dynamics Reveal Loss Pathways in Multi-Resonance Thermally Activated Delayed Fluorescence Emitters
A. N. Stuart, K. Bergmann, I. Cho, W. J. Kendrick, Z. M. Hudson, W. W. H. Wong and G. Lakhwani
Chem. Sci. 2024, 15, 14027–14036. DOI: 10.1039/D4SC03649BControlling the Size of Glassy Organic Dots Exhibiting Thermally Activated Delayed Fluorescence for Bioimaging
W. L. Primrose, P. Hu and Z. M. Hudson
ACS Appl. Nano Mater. 2024, 7, 12673–12681. DOI: 10.1021/acsanm.4c01199Investigating Hydrogen Bonding in Quinoxaline-Based Thermally Activated Delayed Fluorescent Materials
R. Hojo, K. Bergmann and Z. M. Hudson
J. Phys. Chem. Lett. 2024, 15, 5600–5606. DOI: 10.1021/acs.jpclett.4c01177Crystallization-Driven Self-Assembly of Poly(3-hexylthiophene)-b-Poly((2,5-heptan-3-yloxy)p-phenylene), a pi-Conjugated Diblock Copolymer with a Rigid Rod Corona-Forming Block
M. Vespa, L. MacFarlane, Z. M. Hudson and I. Manners
Polym. Chem. 2024, 15, 1839–1850. DOI: 10.1039/D4PY00154KPolymer Dots with Delayed Fluorescence and Tunable Cellular Uptake for Photodynamic Therapy and Time-Gated Imaging
B. T. Luppi, W. L. Primrose and Z. M. Hudson
Angew. Chem. Int. Ed. 2024, 63, e202400712. DOI: 10.1002/anie.202400712Dopants Induce Persistent Room Temperature Phosphorescence in Triarylamine Boronate Esters
Z. Wu, K. Bergmann and Z. M. Hudson
Angew. Chem. Int. Ed. 2024, 63, e202319089. DOI: 10.1002/anie.202319089Homogeneous and Segmented Nanofibers with a Conjugated Poly(3-(2-ethylhexyl)thiophene) Core via Living Crystallization-Driven Self-Assembly
M. Vespa, Z. M. Hudson and I. Manners
Macromolecules 2024, 57, 1509–1520. DOI: 10.1021/acs.macromol.3c02357Organic Photothermal Materials Obtained Using Thermally Activated Delayed Fluorescence Design Principles
J. R. Caine, H. Choi, R. Hojo and Z. M. Hudson
Chem. Eur. J. 2024, 30, e202302861. DOI: 10.1002/chem.202302861Excited-State Dynamics of C3-symmetric Heptazine-Based Thermally Activated Delayed Fluorescence Emitters
K. Bergmann and Z. M. Hudson
Faraday Discuss. 2024, 250, 181–191. DOI: 10.1039/D3FD00121K2023
Macro-/mesoporous Metal–Organic Frameworks Templated by Amphiphilic Block Copolymers Enable Enhanced Uptake of Large Molecules
M. Liu and Z. M. Hudson
Adv. Funct. Mater. 2023, 33, 2214262. DOI: 10.1002/adfm.202214262Imidazophenothiazine-based Thermally Activated Delayed Fluorescence Materials with Ultra Long-Lived Excited States for Energy Transfer Photocatalysis
R. Hojo, K. Bergmann, S. A. Elgadi, D. M. Mayder, M. A. Emmanuel, M. S. Oderinde and Z. M. Hudson
J. Am. Chem. Soc. 2023, 145, 18366–18381. DOI: 10.1021/jacs.3c04132Achieving White-Light Emission Using Organic Persistent Room Temperature Phosphorescence
Z. Wu, H. Choi and Z. M. Hudson
Angew. Chem. Int. Ed. 2023, 62, e202301186. DOI: 10.1002/anie.202301186Unlocking New Applications for Thermally Activated Delayed Fluorescence Using Polymer Nanoparticles
J. R. Caine, P. Hu, A. T. Gogoulis and Z. M. Hudson
Acc. Mater. Res. 2023, 4, 879–891. DOI: 10.1021/accountsmr.3c00124Metallaphotoredox Decarboxylative Arylation of Natural Amino Acids via An Elusive Mechanistic Pathway
M. Pitchai, A. Ramirez, D. M. Mayder, S. Ulaganathan, H. Kumar, D. Aulakh, A. Gupta, A. Mathur, J. Kempson, N. Meanwell, Z. M. Hudson and M. S. Oderinde
ACS Catal. 2023, 13, 647–658. DOI: 10.1021/acscatal.2c05554Semiconducting Polymer Dots Directly Stabilized with Serum Albumin: Preparation, Characterization and Cellular Immunolabeling
R. Gupta, Y. Wang, G. H. Darwish, J. Poisson, A. Szwarczewski, S. Kim, C. Traaseth, Z. M. Hudson and W. R. Algar
ACS Appl. Mater. Interfaces 2023, 15, 55456–55465. DOI: 10.1021/acsami.3c13430Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Sulfidoazatriangulene-Based Materials and their S-oxides
S. A. Elgadi, D. M. Mayder, R. Hojo and Z. M. Hudson
Adv. Opt. Mater. 2023, 11, 2202754. DOI: 10.1002/adom.202202754Thermally Activated Delayed Fluorescence and Mechanochromism in Napthalimide-Azatriangulenes
S. A. Elgadi, A. Y. Cai and Z. M. Hudson
J. Mater. Chem. C 2023, 11, 11589–11596. DOI: 10.1039/D3TC02407EUncovering the Mechanism of Thermally Activated Delayed Fluorescence in Coplanar Emitters using Potential Energy Surface Analysis
K. Bergmann, R. Hojo and Z. M. Hudson
J. Phys. Chem. Lett. 2023, 14, 310–317. DOI: 10.1021/acs.jpclett.2c03425Red-Shifted Emission in Multiple Resonance Thermally Activated Delayed Fluorescent Materials Through Malononitrile Incorporation
A. T. Gogoulis, R. Hojo, K. Bergmann and Z. M. Hudson
Org. Lett. 2023, 25, 7791–7795. DOI: 10.1021/acs.orglett.3c02858Through-Space Charge Transfer and Delayed Fluorescence in Tris(triazolo)triazine Donor-Acceptor Copolymers
R. Hojo, B. T. Luppi, K. Bergmann and Z. M. Hudson
Polym. Chem. 2023, 14, 2742–2749. DOI: 10.1039/D3PY00325FThermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Materials with Imidazopyrazine-5,6-dicarbonitrile Acceptors
P. Xu, R. Hojo and Z. M. Hudson
Chem. Eur. J. 2023, 29, e202203585. DOI: 10.1002/chem.202203585Dibenzodipyridophenazines with Dendritic Electron Donors Exhibiting Deep Red Emission and Thermally Activated Delayed Fluorescence
W. L. Primrose, D. M. Mayder, R. Hojo and Z. M. Hudson
J. Org. Chem. 2023, 88, 4224–4233. DOI: 10.1021/acs.joc.2c02774Cationic Bottlebrush Brush Polymers via Sequential SI-ROMP and SI-ARGET-ATRP
J. Poisson, C. J. Christopherson and Z. M. Hudson
Polym. Int. 2023, 72, 267–273. DOI: 10.1002/pi.6482A Grafting-Through Strategy for the Synthesis of Bottlebrush Nanofibers from Organic Semiconductors
K. A. Thompson, D. M. Mayder, C. M. Tonge, E. R. Sauvé, H. R. Lefeaux and Z. M. Hudson
Can. J. Chem. 2023, 101, 118–125. DOI: 10.1139/cjc-2021-02792022
Heptazine-Based TADF Materials for Nanoparticle-Based Non-linear Optical Bioimaging
D. M. Mayder, R. Hojo, W. L. Primrose, C. M. Tonge and Z. M. Hudson
Adv. Funct. Mater. 2022, 32, 2204087. DOI: 10.1002/adfm.202204087Mechanistic Principles for Engineering Hierarchical Porous Metal–Organic Frameworks
M. Liu, L. Zu and Z. M. Hudson
ACS Nano 2022, 16, 13573–13594. DOI: 10.1021/acsnano.2c06587Estimating Phosphorescent Emission Energies in Ir(III) Complexes using Large-Scale Quantum Computing Simulations
S. N. Genin, I. G. Ryabinkin, N. R. Paisley, S. O. Whelan, M. G. Helander and Z. M. Hudson
Angew. Chem. Int. Ed. 2022, 61, e202116175. DOI: 10.1002/anie.202116175Design of High-Performance Thermally Activated Delayed Fluorescence Emitters Containing s-Triazine and s-Heptazine with Molecular Orbital Visualization by STM
D. M. Mayder, C. M. Tonge, G. D. Nguyen, R. Hojo, N. R. Paisley, J. Yu, G. Tom, S. A. Burke and Z. M. Hudson
Chem. Mater. 2022, 34, 2624–2635. DOI: 10.1021/acs.chemmater.1c03870Miktoarm Star Polymers: Synthesis and Applications
M. Liu, J. R. Blankenship, A. E. Levi, Q. Fu, Z. M. Hudson and C. M. Bates
Chem. Mater. 2022, 34, 6188–6209. DOI: 10.1021/acs.chemmater.2c01220An Imidazoacridine-Based TADF Material as Efficient Organic Photosensitizer for Visible-Light-Promoted [2+2] Cycloaddition
E. R. Sauvé, D. M. Mayder, S. Kamal, M. S. Oderinde and Z. M. Hudson
Chem. Sci. 2022, 13, 2296–2302. DOI: 10.1039/D1SC05098BThermally Activated Delayed Fluorescence Sensitizers as Organic and Green Alternatives in Energy Transfer Photocatalysis
R. Hojo, A. M. Polgar and Z. M. Hudson
ACS Sus. Chem. Eng. 2022, 10, 9665–9678. DOI: 10.1021/acssuschemeng.2c01426Deep-Blue Emission and Thermally Activated Delayed Fluorescence via Dimroth Rearrangement of Tris(triazolo)triazines
R. Hojo, D. M. Mayder and Z. M. Hudson
J. Mater. Chem. C 2022, 10, 13871–13877. DOI: 10.1039/D2TC01153KPolymer Dots and Glassy Organic Dots using Dibenzodipyridophenazine Dyes as Water-Dispersible TADF Probes for Cellular Imaging
D. M. Mayder, C. J. Christopherson, W. L. Primrose, A. S.-M. Lin and Z. M. Hudson
J. Mater. Chem. B 2022, 10, 6496-6506. DOI: 10.1039/D2TB01252ADonor Modification of Thermally Activated Delayed Fluorescence Photosensitizers for Organic Atom Transfer Radical Polymerization
A. M. Polgar, S. H. Huang and Z. M. Hudson
Polym. Chem. 2022, 13, 3892–3903. DOI: 10.1039/D2PY00470DLuminescent Surface-Tethered Polymer Brush Materials
J. Poisson and Z. M. Hudson
Chem. Eur. J. 2022, 28, e202283262. DOI: 10.1002/chem.202200552Rheology of Mature Fine Tailings
J. Piette, A. Abbasi Moud, J. Poisson, B. Derakhshandeh, Z. M. Hudson and S. G. Hatzikiriakos
Phys. Fluids 2022, 34, 063104. DOI: 10.1063/5.00915052021
Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Time-Gated Cellular Imaging
C. J. Christopherson, N. R. Paisley, Z. Xiao, W. R. Algar and Z. M. Hudson
J. Am. Chem. Soc. 2021, 143, 13342–13349. DOI: 10.1021/jacs.1c06290Polymer Dots with Enhanced Photostability, Quantum Yield, and Two-Photon Cross-Section Using Structurally Constrained Deep-Blue Fluorophores
D. M. Mayder, C. M. Tonge, G. D. Nguyen, M. V. Tran, G. Tom, G. H. Darwish, R. Gupta, K. Lix, S. Kamal, W. R. Algar, S. A. Burke and Z. M. Hudson
J. Am. Chem. Soc. 2021, 143, 16976–16992. DOI: 10.1021/jacs.1c06094Near-Infrared Emitting Boron Difluoride Curcuminoid-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence as Biological Imaging Probes
N. R. Paisley, S. V. Halldorson, M. V. Tran, R. Gupta, S. Kamal, W. R. Algar and Z. M. Hudson
Angew. Chem. Int. Ed. 2021, 60, 18630–18638. DOI: 10.1002/anie.202103965Preparation of Patterned and Multilayer Thin Films for Organic Electronics via Oxygen-Tolerant SI-PET-RAFT
J. Poisson, A. M. Polgar, M. Fromel, C. W. Pester and Z. M. Hudson
Angew. Chem. Int. Ed. 2021, 60, 19988–19996. DOI: 10.1002/anie.202107830Donor-Acceptor Materials Exhibiting Deep Blue Emission and Thermally Activated Delayed Fluorescence with Tris(triazolo)triazine
R. Hojo, D. M. Mayder and Z. M. Hudson
J. Mater. Chem. C 2021, 9, 14342–14350. DOI: 10.1039/D1TC03480DDeep-Blue Fluorophores with Imidazoacridine Acceptors: Enhancing Photostablility and Two-Photon Fluorescence using Structural Constraint
E. R. Sauvé, C. M. Tonge and Z. M. Hudson
J. Mater. Chem. C 2021, 9, 4164–4172. DOI:10.1039/D0TC05241HThermally Activated Delayed Fluorescence Materials as Organic Photosensitizers
A. M. Polgar and Z. M. Hudson
Chem. Commun. 2021, 57, 10675–10688. DOI: 10.1039/D1CC04593HEnhancement of Red Thermally Assisted Fluorescence in Bottlebrush Block Copolymers
A. M. Polgar, J. Poisson, C. J. Christopherson and Z. M. Hudson
Macromolecules 2021, 54, 7880–7889. DOI: 10.1021/acs.macromol.1c01524Exploring the Scope of Through-Space Charge Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor-Acceptor Copolymers
J. Poisson, C. M. Tonge, N. R. Paisley, E. R. Sauvé, H. McMillan, S. V. Halldorson and Z. M. Hudson
Macromolecules 2021, 54, 2466–2476. DOI:10.1021/acs.macromol.0c02494Yield Stress and Wall Slip of Kaolinite Networks
A. Abbasi Moud, J. Poisson, Z. M. Hudson and S. G. Hatzikiriakos
Phys. Fluids 2021, 33, 053105. DOI:10.1063/5.00505412020
Organization of Chromophores into Multiblock Bottlebrush Nanofibers Allows for Regulation of Energy Transfer Processes
E. R. Sauvé, C. M. Tonge and Z. M. Hudson
Chem. Mater. 2020, 32, 2208–2219. DOI:10.1021/acs.chemmater.0c00224.Room Temperature Crystallization of Amorphous Polysiloxane usiung Photodimerization.
T. Wright, Y. Petel, C. O. Zellman, E. R. Sauvé, Z. M. Hudson, C. A. Michal and M. O. Wolf
Chem. Sci. 2020, 11, 3081–3088. DOI:10.1039/C9SC06235AThermally Assisted Fluorescent Polymers: Polycyclic Aromatic Materials for High Color Purity and White Light Emission
A. M. Polgar, C. M. Tonge, C. J. Christopherson, N. R. Paisley, A. C. Reyes and Z. M. Hudson
ACS Appl. Mater. Interfaces 2020, 12, 38602–38613. DOI: 10.1021/acsami.0c078921,8-Naphthalimide-Based Polymers Exhibiting Deep-Red Thermally Activated Delayed Fluorescence and their Application in Ratiometric Temperature Sensing
C. J. Christopherson, D. M. Mayder, J. Poisson, N. R. Paisley, C. M. Tonge and Z. M. Hudson
ACS Appl. Mater. Interfaces 2020, 12, 20000–20011. DOI:10.1021/acsami.0c05257Color-Tunable Thermally Activated Delayed Fluorescence in Oxadiazole-Based Acrylic Copolymers: Photophysical Properties and Applications in Ratiometric Oxygen Sensing
C. M. Tonge, N. R. Paisley, A. M. Polgar, K. Lix, W. R. Algar and Z. M. Hudson
ACS Appl. Mater. Interfaces 2020, 12, 6525-6535. DOI:10.1021/acsami.9b22464Towards Biodegradable Electronics: Ionic Diodes Based on a Cellulose Nanocrystals-Agarose Hydrogel
K. Nyamayaro, P. Keyvani, F. D'Acierno, J. Poisson, Z. M. Hudson, C. Michal, J. Madden, S. Hatzikiriakos, and P. Mehrkhodavandi
ACS Appl. Mater. Interfaces 2020, 12, 52182–52191. DOI: 10.1021/acsami.0c15601Dextran-Functionalization of Semiconducting Polymer Dots and Conjugation with Tetrameric Antibody Complexes for Bioanalysis and Imaging
K. Lix, M. V. Tran, M. Massey, K. Rees, E. R. Sauvé, Z. M. Hudson and W. R. Algar
ACS Appl. Bio. Mater. 2020, 3, 432–440. DOI:10.1021/acsabm.9b00899Tunable Benzothiadiazole-Based Donor-Acceptor Materials for Two-Photon Excited Fluorescence
N. R. Paisley, C. M. Tonge, D. M. Mayder, K. A. Thompson and Z. M. Hudson
Mater. Chem. Front. 2020, 4, 555–566. DOI:10.1039/C9QM00627CBis(hexamethylazatriangulene)sulfone: A High-Stability Deep Blue-Violet Fluorophore with 100% Quantum Yield and CIEy < 0.07
C. M. Tonge, J. Zeng, Z. Zhao, B. Z. Tang and Z. M. Hudson
J. Mater. Chem. C 2020, 8, 5150-5155. DOI:10.1039/C9TC05938E.Blue to Yellow Thermally Activated Delayed Fluorescence with Quantum Yields Near Unity in Acrylic Polymers Based on D-π-A Pyrimidines
A. M. Polgar, J. Poisson, N. R. Paisley, C. J. Christopherson, A. C. Reyes and Z. M. Hudson
Macromolecules 2020, 53, 2039-2050. DOI:10.1021/acs.macromol.0c00287Thermally Activated Delayed Fluorescence in 1,3,4-Oxadiazoles with π-Extended Donors
D. M. Mayder, C. M. Tonge and Z. M. Hudson
J. Org. Chem. 2020, 85, 11094–11103. DOI:10.1021/acs.joc.0c00908Donor-Acceptor Materials Exhibiting Thermally Activated Delayed Fluorescence using a Planarized N-phenylbenzimidazole Acceptor
E. R. Sauvé, J. Paeng, S. Yamaguchi and Z. M. Hudson
J. Org. Chem. 2020, 85, 108-117. DOI:10.1021/acs.joc.9b02283Self-Assembly of Luminescent Triblock Bottlebrush Copolymers in Solution
F. Shao, Y. Wang, C. M. Tonge, E. R. Sauvé and Z. M. Hudson
Polym. Chem. 2020, 11, 1062–1071. DOI:10.1039/C9PY01695CStimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging
N. R. Paisley, C. M. Tonge and Z. M. Hudson
Front. Chem. 2020, 8:229. DOI:10.3389/fchem.2020.002292019
Aggregation-Induced Energy Transfer in Colour-Tunable Multiblock Bottlebrush Nanofibers
E. R. Sauvé, C. M. Tonge and Z. M. Hudson
J. Am. Chem. Soc. 2019, 141, 16422–16431. DOI:10.1021/jacs.9b08133Interface-Dependent Aggregation-Induced Delayed Fluorescence in Bottlebrush Polymer Nanofibers
C. M. Tonge and Z. M. Hudson
J. Am. Chem. Soc. 2019, 141, 13970–13976. DOI:10.1021/jacs.9b07156Fluorescent Heterotelechelic Single-Chain Polymer Nanoparticles: Synthesis, Spectroscopy and Cellular Imaging
D. N. F. Bajj, M. V. Tran, H.-Y. Tsai, H. Kim, N. R. Paisley, W. R. Algar and Z. M. Hudson
ACS Appl. Nano Mater. 2019, 2, 898–909. DOI: 10.1021/acsanm.8b02149Cu(0)-RDRP as an Efficient and Low-Cost Synthetic Route to Blue-Emissive Polymers for OLEDs
C. M. Tonge, F. Yuan, Z.-H. Lu and Z. M. Hudson
Polym. Chem. 2019, 10, 3288-3297. DOI: 10.1039/C9PY00294DSelf-Assembly of Giant Bottlebrush Block Copolymer Surfactants from Luminescent Organic Electronic Materials
Y. Wang, F. Shao, E. R. Sauvé, C. M. Tonge and Z. M. Hudson
Soft Matter 2019, 15, 5421–5430. DOI: 10.1039/C9SM00931K2018
Multiblock Bottlebrush Nanofibers from Organic Electronic Materials
C. M. Tonge, E. R. Sauvé, S. Cheng, T. A. Howard and Z. M. Hudson
J. Am. Chem. Soc. 2018, 140, 11599–11603. DOI:10.1021/jacs.8b07915Ti-Catalyzed Hydroamination for the Synthesis of Amine-Containing π-Conjugated Materials
H. Hao, K. A. Thompson, Z. M. Hudson and L. L. Schafer
Chem. Eur. J. 2018, 24, 5562–5568. DOI: 10.1002/chem.201704500An Efficient Room-Temperature Synthesis of Highly Phosphorescent Styrenic Pt(II) Complexes and their Polymerization by ATRP
D. M. Mayder, K. A. Thompson, C. J. Christopherson, N. R. Paisley and Z. M. Hudson
Polym. Chem. 2018, 9, 5418 - 5425. DOI:10.1039/C8PY01337CPolymerization of Acrylates Based on n-Type Organic Semiconductors using Cu(0)-RDRP
C. M. Tonge, E. R. Sauvé, N. R. Paisley, J. E. Heyes and Z. M. Hudson
Polym. Chem. 2018, 9, 3359–3367. DOI:10.1039/C8PY00670ACu(0)-RDRP of Acrylates based on p-Type Organic Semiconductors
E. R. Sauvé, C. M. Tonge, N. R. Paisley, S. Cheng and Z. M. Hudson
Polym. Chem. 2018, 9, 1397-1403. DOI:10.1039/C8PY00295ASynthesis of Phosphorescent Iridium-Containing Acrylic Monomers and their Room-Temperature Polymerization by Cu(0)-RDRP
C. J. Christopherson, Z. S. Hackett, E. R. Sauvé, N. R. Paisley, C. M. Tonge, D. M. Mayder and Z. M. Hudson
J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 2539–2546. DOI:10.1002/pola.29233Synthesis of Polymeric Organic Semiconductors Using Semifluorinated Polymer Precursors
N. R. Paisley, C. M. Tonge, E. R. Sauvé, S. V. Halldorson and Z. M. Hudson
J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 2183–2191. DOI:10.1002/pola.291832017
Highly Photoluminescent Nonconjugated Polymers for Single-Layer Light Emitting Diodes
Z. A. Page, C.-Y. Chiu, B. Narupai, D. S. Laitar, S. Mukhopadhyay, A. Sokolov, Z. M. Hudson, R. Bou Zerdan, A. J. McGrath, J. W. Kramer, B. E. Barton and C. J. Hawker
ACS Photonics 2017, 4, 631–641. DOI:10.1021/acsphotonics.6b009942016
Chemoselective Radical Dehalogenation and C–C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts
S. O. Poelma, G. L. Burnett, E. H. Discekici, K. M. Mattson, N. J. Treat, Y. Luo, Z. M. Hudson, S. L. Shankel, P. G. Clark, J. W. Kramer, C. J. Hawker and J. Read de Alaniz
J. Org. Chem. 2016, 81, 7155-7160. DOI:10.1021/acs.joc.6b010342015
Transformation and Patterning of Supermicelles using Dynamic Holographic Assembly
O. E. C. Gould, H. Qiu, D. J. Lunn, J. Rowden, R. L. Harniman, Z. M Hudson, M. A. Winnik, M. J. Miles and I. Manners
Nat. Commun. 2015, 6, 10009. DOI:10.1038/ncomms10009Multidimensional Hierarchical Self-Assembly of Amphiphilic Cylindrical Block Comicelles
H. Qiu, Z. M. Hudson, M. A. Winnik and I. Manners
Science 2015, 347, 1329–1332. DOI:10.1126/science.1261816Fluorous Cylindrical Micelles of Controlled Length by Crystallization-Driven Self-Assembly of Block Copolymers in Fluorinated Media
Z. M. Hudson, J. Qian, C. E. Boott, M. A. Winnik and I. Manners
ACS Macro Lett. 2015, 4, 187–191. DOI:10.1021/mz500764nA Highly Reducing Metal-Free Photoredox Catalyst: Design and Application in Radical Dehalogenations
E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo, C. J. Hawker and J. Read de Alaniz
Chem. Commun. 2015, 51, 11705-11708. DOI:10.1039/C5CC04677GA Facile Synthesis of Catechol‐Functionalized Poly(ethylene oxide) Block and Random Copolymers
K. M. Mattson, A. A. Latimer, A. J. McGrath, N. A. Lynd, P. Lundberg, Z. M. Hudson, and C. J. Hawker
J. Polym. Sci. A: Polym. Chem. 2015, 53, 2685-2692. 10.1002/pola.27749Triarylboron-Functionalized Metal Complexes for OLEDs: Chapter 8 in “Organometallics and Related Molecules for Energy Conversion”
Z. M. Hudson, X. Wang and S. Wang.; W.-Y. Wong, Ed.
Springer-Verlag: Heidelberg, 2015, pp. 207-239.2014
Tailored Hierarchical Micelle Architectures using Living Crystallization-Driven Self-Assembly in Two Dimensions
Z. M. Hudson, C. E. Boott, M. E. Robinson, P. A. Rupar, M. A. Winnik and I. Manners
Nat. Chem. 2014, 6, 893–898. DOI:10.1038/nchem.2038Colour-Tunable Fluorescent Multiblock Micelles
Z. M. Hudson, D. J. Lunn, M. A. Winnik and I. Manners
Nat. Commun. 2014, 5:3372. DOI:10.1038/ncomms4372Assembly and Disassembly of Ferrocene-Based Nanotubes
Z. M. Hudson and I. Manners
Science 2014, 422, 482-483 (Invited Perspective). DOI:10.1126/science.1254140Gradient Crystallization-Driven Self-Assembly: Cylindrical Micelles with “Patchy” Coronal Nanosegregation via the Coassembly of Linear and Brush Block Copolymers
J. R. Finnegan, D. J. Lunn, O. E. C. Gould, Z. M. Hudson, G. R. Whittell, M. A. Winnik and I. Manners.
J. Am. Chem. Soc. 2014, 136, 13835–13844. DOI:10.1021/ja507121hUniform, High Aspect Ratio Fiber-like Micelles and Block Co-Micelles with a Crystalline π-Conjugated Polythiophene Core by Self-Seeding
J. Qian, X. Li, D. J. Lunn, J. Gwyther, Z. M. Hudson, E. Kynaston, P. A. Rupar, M. A. Winnik and I. Manners
J. Am. Chem. Soc. 2014, 136, 4121–4124. DOI:10.1021/ja500661kImpact of Constitutional Isomerism on Phosphorescence and Anion-Sensing Properties of Donor-Acceptor Organoboron Pt(II) Complexes
M.-N. Belzile, X. Wang, Z. M. Hudson and S. Wang
Dalton Trans. 2014, 43, 13696–13703. DOI:10.1039/C4DT01949K2012
Highly Efficient Blue Phosphorescence from Triarylboron-Functionalized Platinum(II) Complexes of N-Heterocyclic Carbenes
Z. M. Hudson, C. Sun, M. G. Helander, Y.-L. Chang, Z.-H. Lu and S. Wang
J. Am. Chem. Soc. 2012, 134, 13930–13933. DOI:10.1021/ja3048656N-Heterocyclic Carbazole-Based Hosts for Simplified Single-Layer Phosphorescent OLEDs with High Efficiency
Z. M. Hudson, Z.-B. Wang, M. G. Helander, Z.-H. Lu and S. Wang
Adv. Mater. 2012, 24, 2922–2928. DOI:10.1002/adma.201200927Modulating the Photoisomerization of N,C-Chelate Organoboranes with Triplet Acceptors
Z. M. Hudson, S.-B. Ko, S. Yamaguchi, and S. Wang
Org. Lett. 2012, 14, 5610–5613. DOI:10.1021/ol302742gEfficient and High Yield One-Pot Synthesis of Cyclometalated Platinum(II) β-Diketonates at Ambient Temperature
Z. M. Hudson, B. A. Blight and S. Wang
Org. Lett. 2012, 14, 1700-1703. DOI:10.1021/ol300242fDouble Cyclization/Aryl Migration Across an Alkyne Bond Enabled by Organoboryl and Diarylplatinum Groups
C. Sun, Z. M. Hudson, L. D. Chen and S. Wang
Angew. Chem. Int. Ed. 2012, 51, 5671-5674. DOI:10.1002/ange.2012017812011
Highly Efficient Orange Electrophosphorescence from a Trifunctional Organoboron-Pt(II) Complex
Z. M. Hudson, M. G. Helander, Z.-H. Lu and S. Wang
Chem. Commun. 2011, 47, 755–757. DOI:10.1039/C0CC04014BSwitchable Three-State Fluorescence of a Nonconjugated Donor-Acceptor Triarylborane
Z. M. Hudson, X.-Y. Liu and S. Wang
Org. Lett. 2011, 13, 300–303. DOI:10.1021/ol102749yProbing the Structural Origins of Vapochromism of a Triarylboron-Functionalized Pt(II) Acetylide by Optical and Multinuclear Solid-State NMR Spectroscopy
Z. M. Hudson, C. Sun, K. J. Harris, B. E. G. Lucier, R. W. Schurko and S. Wang
Inorg. Chem. 2011, 50, 3447–3457. DOI:10.1021/ic102349hNonconjugated Dimesitylboryl-Functionalized Phenylpyridines and Their Cyclometalated Platinum(II) Complexes
Z. M. Hudson and S. Wang
Organometallics 2011, 30, 4695–4701. DOI:10.1021/om200539rMetal-Containing Triarylboranes: Photophysical Properties and Applications
Z. M. Hudson and S. Wang
Dalton Trans. 2011, 40, 7805–7816. DOI:10.1039/C1DT10292CUnlocking the Full Potential of Organic Light-Emitting Diodes on Flexible Plastic
Z.-B. Wang, M. G. Helander, D. P. Puzzo, Z. M. Hudson, S. Wang and Z.-H. Lu
Nat. Photonics 2011, 5, 737-757. DOI:10.1038/nphoton.2011.259Triarylboron-Functionalized 8-Hydroxyquinolines and Their Aluminum(III) Complexes
V. Zlojutro, Y. Sun, Z. M. Hudson, and S. Wang
Chem. Commun. 2011, 3837–3839. DOI:10.1039/C0CC04573JPt(II) Complex Based Phosphorescent Organic Light Emitting Diodes with External Quantum Efficiencies Above 20%
Z.-B. Wang, M. G. Helander, Z. M. Hudson, J. Qiu, S. Wang and Z.-H. Lu
Appl. Phys. Lett. 2011, 98, 213301. DOI:10.1063/1.3593495Tuning and Switching MLCT Phosphorescence of [Ru(bpy)3]2+ Complexes with Triarylboranes and Anions
Y. Sun, Z. M. Hudson, Y.-L. Rao and S. Wang
Inorg. Chem. 2011, 50, 3373–3378. DOI:10.1021/ic1021966A Polyboryl-Functionalized Triazine as an Electron-Transport Material for OLEDs
C. Sun, Z. M. Hudson, M. G. Helander, Z.-H. Lu and S. Wang
Organometallics 2011, 30, 5552-5555. DOI:10.1021/om20079792010
Enhancing Phosphorescence and Electrophosphorescence Efficiency of Cyclometalated Pt(II) Compounds with Triarylboron
Z. M. Hudson, C. Sun, M. G. Helander, H. Amarne, Z.-H. Lu, and S. Wang
Adv. Funct. Mater. 2010, 20, 3426-3439. DOI:10.1002/adfm.201000904Linear and Star-Shaped Benzimidazolyl Derivatives: Syntheses, Photophysical Properties and Use as Highly Efficient Electron Transport Materials in OLEDs
W. White, Z. M. Hudson, X. Feng, S. Han, Z.-H. Lu and S. Wang
Dalton Trans. 2010, 39, 892–899. DOI:10.1039/B918203AReactivity of Aryldimesitylboranes under Suzuki-Miyaura Coupling Conditions
N. Wang, Z. M. Hudson and S. Wang
Organometallics 2010, 29, 4007–4011. DOI:10.1021/om10069032009
Impact of Donor−Acceptor Geometry and Metal Chelation on Photophysical Properties and Applications of Triarylboranes
Z. M. Hudson and S. Wang
Acc. Chem. Res. 2009, 42, 1584–1596. DOI:10.1021/ar900072uSwitchable Ambient-Temperature Singlet-Triplet Dual Emission in Triarylboron-Pt(II) Complexes
Z. M. Hudson, S.-B. Zhao, R.-Y. Wang and S. Wang
Chem. Eur. J. 2009, 15, 6131–6137. DOI:10.1002/chem.200900641Enhancing the Photochemical Stability of N,C-Chelate Boryl Compounds: C-C Bond Formation versus C=C Bond cis, trans-Isomerization
C. Baik, Z. M. Hudson, H. Amarne and S. Wang
J. Am. Chem. Soc. 2009, 131, 14549–14559. DOI:10.1021/ja906430sThe Structure of an Anionic Coordination Polymer {K2[Pt2 Ag8(2,2′-bipy)2(O2CCF3)14]}n
Z. M. Hudson, Y. Sun, B. Ross, R. Y. Wang, and S. Wang
Acta Cryst. C 2009, 65, m328–m330. DOI:10.1107/S010827010902839X2008
Impact of the Linker on the Electronic and Luminescent Properties of Diboryl Compounds: Molecules with Two BMes2 Groups and The Peculiar Behavior of 1,6-(BMes2)2pyrene
S.-B. Zhao, P. Wücher, Z. M. Hudson, T. M. McCormick, X.-Y. Liu, S. Wang, X.-D. Feng, and Z.-H. Lu
Organometallics 2008, 27, 6446–6456. DOI:10.1021/om800856gThe Influence of Alkoxy Chain Length on the Ferroelectric Properties of Chiral Fluorenol Liquid Crystals
J. C. Roberts, Z. M. Hudson, and R. P. Lemieux
J. Mater. Chem. 2008, 18, 3361–3365. DOI:10.1039/B804673E